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1 Introduction

The study of heart rate variability (HRV) has become increasingly popular because information on the
state of the autonomic nervous system can be noninvasively inferred by the use of relatively basic signal
processing techniques [4]. Despite the seeming simplicity of deriving the series of RR intervals from the

ECG signal and defining a related measure of dispersion, it is essential to make sure that the heart rate
variability is accurately characterized. Several definitions of signals for representing the heart rhythm have

been suggested which characterize variability either in terms of successive RR intervals or instantaneous
heart rate. In particular, spectral analysis of heart rhythm signals has received considerable attention

since oscillations embedded in the rhythm, for example due to respiratory sinus arrhythmia or the blood
pressure control system, can be quantified from their corresponding peaks in the power spectrum. Such

oscillations are characterized by low frequency components which typically are located in the interval
below 0.5 Hz.

The starting point of HRV analysis is the series of successive time instants, t0, t1, . . . , tK , produced by
a QRS detector applied on the ECG signal, commonly transformed into a series of RR intervals dIT (k),

dIT (k) = tk − tk−1, k = 1, . . . , K, (1)

as illustrated by Figure 1; the subscript “IT” is used since the definition in (1) is also referred to as the

interval tachogram.
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Figure 1: The definition of RR intervals used for the study of heart rate variability.

Clinical studies of heart rate variability have commonly been synonymous to the use of simple time
domain measures such as the standard deviation of the RR intervals. Although a variety of heart rhythm

representations may be used, the interval tachogram dIT (k), as defined in (1), is the preferred starting
point for the design of such measures.

A straightforward way to quantify HRV is thus to calculate the standard deviation of the available NN
intervals,

SDNN =

√√√√ 1

K − 1
K∑
k=1

(dIT (k)− m̄d)2, (2)

where m̄d denotes the mean length of the K different NN intervals. For long-term recordings, SDNN only

provides a very rough characterization of HRV since the mean heart rate will change considerably from
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the active parts of the day to the night during sleep. In Holter recordings, both SDNN and other variants
reflect long-term variations in heart rate. Therefore, additional dispersion measures have been suggested

which reflect short-term variations by exploiting the difference between successive NN intervals, that is,
dIT (k)− dIT (k− 1). The effect of the difference operation is to accentuate the high-frequency content of
the series of NN intervals. This measure is commonly referred to as the root mean square of successive
differences (“rMSSD”). These type of measures integrate the rich information present at the HRV and

then other representations that do not loose information seems to be potentially preferable.

2 Heart Rhythm Representations

The purpose of a heart rhythm representation is to produce a signal which accurately reflects variations in

heart rhythm, and which lends itself to different types of analysis. The heart rhythm can be represented
in terms of either interval or rate. The latter entity is thus defined by the inverse of the RR intervals.

Other representations have, however, also been put forward which take their starting point in the series
of time instants of the QRS events rather than in the series of successive RR intervals (the distinction

between these two types of series is important from a conceptual viewpoint although the difference as
such is small since the latter series is easily derived from the former). The proposed representations, in

addition to interval tachogram are:

• Inverse interval tachogram dIIT (k)

dIIT (k) =
1

tk − tk−1 , k = 1, . . . , K, (3)

• Interval function

duIF (t) =

K∑
k=1

(tk − tk−1) δ(t− tk) =
K∑
k=1

dIF (t)δ(t− tk), (4)

• Inverse interval function

duIIF (t) =

K∑
k=1

(
1

tk − tk−1

)
δ(t− tk) =

K∑
k=1

dIIF (t)δ(t− tk), (5)

• Event series
duE(t) =

K∑
k=0

δ(t− tk). (6)

The performance requirement of a heart rhythm representation should be that it “well reflects variations
in heart rhythm”, however this is, unfortunately, not easily expressed in exact terms and will depend

on the underlying physiology that generates the HRV. Then, models that account for the physiological
behavior will lead to mathematical modelling of HRV, giving not only a representation of the autonomic

nervous influence on the heart rate, but also providing a tool which helps in indicating which of the HRV
representations exhibiting the better performance in term of modelling the underlying physiology. One

such model is the integral pulse frequency modulation (IPFM) model which has gained wide popularity
in the field of HRV analysis.

3 The integral pulse frequency modulation (IPFM) model

The integral pulse frequency modulation (IPFM) model is a model for the generation of an event series,
such as the series of heart beat occurrences, and assumes the existence of a continuous-time input signal

which possesses a particular physiological interpretation[7, 8, 9, 10, 11, 1]. Figure 2 presents a block
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Figure 2: (a) The integral pulse frequency modulation model, (b) the input signal m(t) which modulates

the variations in interval length, (c) the output of the integrator assuming a threshold level at R, and
(d) the resulting event series at times t0, t1, . . ..

diagram of the IPFM model and shows the signals occurring at various steps of the model. The input

signal is integrated until a threshold, R, is reached at which an event is generated at time tk; the integrator
is then reset to zero and the procedure is repeated, and so on. The threshold R defines the mean interval

length between successive events. The input signal, being positive-valued, is the sum of two quantities: a
DC level, m0, and a modulating signal, m(t), whose DC component is equal to zero and whose amplitude

is bounded such that |m(t)| < m0 to ensure that the input signal always remains positive. Assuming that
the IPFM model is valid, our objective is to design a method which can retrieve information on m(t)

from the observed series of event times tk,

dE(t) =
K∑
k=0

δ(t− tk). (7)

In physiological terms, the output signal of the integrator in Figure 2 can be viewed as the charging

of the membrane potential of a sino-atrial pacemaker cell [2]. The potential increases until a certain
threshold is exceeded and then triggers off an action potential which, when combined with the effect of

many other action potentials, initiates a new cardiac cycle. The input to the integrator consists of m0,
which defines the mean heart rate, and the modulating signalm(t) which describes the variations in heart
rate as modulated by the autonomic activity (that is, sympathetic and parasympathetic influences) on

the sino-atrial node. In general, the signal m(t) is band-limited such that spectral components above
0.4–0.5 Hz can be neglected during resting conditions. The assumption that |m(t)| < m0 is included
in order to account for the property that heart rate variability typically is small compared to the mean
heart rate.
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In mathematical terms, the series of event times is defined by the following equation which is crucial
to the IPFM model, ∫ tk

tk−1
(m0 +m(τ))dτ = R, k = 1, . . . , K. (8)

Variations in the modulating signal m(t) determine the variations in interval length between two suc-

cessive events at tk−1 and tk. Without any modulation, that is, for m(t) ≡ 0, the resulting event series
is perfectly regular and has a constant interval length equal to R/m0; the corresponding unmodulated

event repetition frequency F0 is given by

F0 =
m0
R
.

The constant m0 is typically set to one such that the threshold R defines the repetition frequency in
units of Hertz, F0 =

1
R , and is then denoted by R = T 0. Hence, the heart rate of the event series is equal

to 60 beats per minute when T 0 is chosen to one second.
Assuming that the initial beat occurs at t0 = 0, the integral in (8) can alternatively be expressed as

∫ tk
0
(1 +m(τ))dτ = kT 0, k = 0, . . . , K, (9)

where k is an integer that indexes the kth beat. Furthermore, instead of having the IPFM model defined

for only those time instants tk when the threshold T 0 is exceeded, it can be generalized to a continuous-
time function by introducing the following definition [1],

∫ t
0
(1 +m(τ))dτ = κ(t)T 0. (10)

Here, integration up to a certain time t is proportional to a continuous-valued indexing function κ(t) whose
value at tk is identical to the integer-valued beat index k, that is, κ(tk) = k. This model generalization

will later on allow us to develop a heart rhythm representation, the heart timing signal.

3.1 Heart timing representation

The heart timing signal is based on the IPFM model and aims explicitly at estimating the modulating
signal m(t) [1]. The heart timing duHT (t) is an unevenly sampled signal that is defined as the deviation

of the event time tk from the expected occurrence time related to the mean RR interval length kT 0, that
is,

duHT (t) =

K∑
k=0

(kT 0 − tk)δ(t− tk) =
K∑
k=0

dHT (t)δ(t− tk). (11)

In order to see how this signal is related to the IPFM model, we rewrite the model equation in (9) for a
particular time tk such that

∫ tk
0

m(τ)dτ = kT 0 − tk = dHT (tk). (12)

Hence, dHT (tk) and m(t) are linearly related to each other through the integration of m(t) up to tk. In

order to compute the heart timing signal, an estimate of T 0 is first required from the available data.
This parameter is estimated by simply dividing the occurrence time of the last event with the number of

events, that is,

T 0 =
tK − t0
K

=
tK
K
. (13)

where it is assumed that t0 = 0.
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The rationale for using the heart timing signal becomes evident when the Fourier transform of its
generalization to continuous time, dHT (t), is determined. To do this, we make use of the generalized

IPFM model in (10) by which the heart timing signal can be expressed as,

dHT (t) =

∫ t
0
m(τ)dτ =

∫ t
−∞
m(τ)dτ. (14)

Here, the integration interval has been extended to −∞ due to the nonrestrictive assumption that m(t)
is a causal function, that is, it is equal to zero for t < 0. The Fourier transform of (14) is given by [3],

DHT (Ω) =

∫ ∞
−∞
dHT (t)e

−jΩtdt =
Dm(Ω)

jΩ
+ πDm(0)δ(Ω) =

Dm(Ω)

jΩ
, (15)

where DHT (Ω) and Dm(Ω) denotes the Fourier transform of dHT (t) andm(t), respectively, and Ω = 2πF .
The term πDm(0)δ(Ω) is identical to zero since m(t) was earlier assumed to have a DC component equal

to zero.
Consequently, the power spectrum Ŝm(Ω) of m(t) can be obtained by multiplying the spectrum of

the heart timing signal DHT (Ω), calculated from the event times t0, . . . , tK contained in the observation
interval, with jΩ,

Ŝm(Ω) =
1

(K + 1)T 0
|D̂m(Ω)|2 = 1

(K + 1)T 0
|ΩD̂HT (Ω)|2. (16)

The multiplicative factor 1/((K + 1)T 0) is included to account for number of event times. Once the
spectrum of the heart timing signal in (11) has been computed, it is straightforward to estimate the

spectrum of the modulating signal m(t). The modulating signal m(t) is assumed to be bandlimited to
a maximum frequency lower than half the mean heart rate 1/(2T 0). As a result, dHT (t) will also be

bandlimited, being the integral of m(t), and can therefore be fully recovered from the time instants tk.
The agreement betweenm(t) and the different heart rhythm representations are illustrated in Figure 3,

assuming that m(t) is sinusoidal. Figures 3(a)–(c) show the signals at different stages of the IPFM model,
namely, the input signal, the output signal of the integrator, and the resulting event series. As expected,

the heart timing signal dHT (t) is the preferred technique for recovering m(t) although the inverse interval
function dIIF (t) comes rather close. Another observation is that the representations which are inversely
related to the interval length are better in estimating m(t) than are those proportional to the interval

length.
Finally, it may be appropriate to point out that although the heart timing signal exhibits a superior

performance within the context of IPFM modeling than do the other representations, such model-based
studies do not fully account for heart rate variability observed in humans. Hence, the improvement in

performance for the heart timing signal remains to be demonstrated from a clinical point of view, and
may eventually turn out to be embedded in the IPFM modeling error.

Further considerations will require the problem of estimating the spectrum from the unevenly sam-
pled data, that can be address either by interpolation to evenly sampled plus usual spectral estimation

techniques or by direct estimation from the unevenly sample data. The interested reader is referred to
[6, 1]. Also artifact in QRS detection (false alarms and missed beat) cause disturbances in the contained

spectrum that can be deal within the same framework of other physiological “artifact” call the ectopic
beats originated at sites different from SA node and then not suitable for HRV analysis [5]
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Figure 3: Different heart rhythm representations for an event series generated by the IPFM model

using a modulating function m(t)=0.4 cos(2πF1t) with F1=0.1 Hz; the mean RR interval length is T 0=1
second. (a) The modulating function m(t), (b) the output of the integrator κ(t), (c) the resulting event

series, (d) the interval tachogram (dIT (k)/T 0-1), (e) the inverse interval tachogram (T 0dIIT (k)-1), (f) the
interval function (dIF (t)/T 0-1), (g) the inverse interval function (T 0dIIF (t)-1), and (h) the heart timing
signal 2πF1dHT (t). The event times tk are marked with circles and the intermediate values are obtained

by interpolation [1]. The function m(t) is superimposed for comparison (dashed line).
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